Neuronale Netzwerke – Kurze Begriffserklärung

Künstliche Neuronale Netzwerke (KNN) bestehen aus unterschiedlichen Verarbeitungseinheiten, die miteinander über Kommunikationskanäle verknüpft sind. Diese Netze sind Simulationsmodelle für die Nachbildung des menschlichen Denkens im Sinne von Künstlicher Intelligenz. Die Knotenpunkte der Einheiten, die parallel Informationen verarbeiten, werden in Anlehnung an menschliche Gehirnzellen auch Neuronen genannt.

Wie Neuronale Netzwerke arbeiten

Die Funktionsweise eines Künstlichen Neuronalen Netzes hat vor allem den Vorteil der schnellen Verarbeitung. Die meisten herkömmlichen Algorithmen können nur linear arbeiten, KNN dagegen parallel. Drei Komponenten bestimmen den Aufbau eines solchen Netzes:

  1. Das Neuronenmodell steht für die Input- und Output-Beziehungen einer einzelnen Verarbeitungseinheit im KNN. Jedes Neuron hat mehrere Eingänge und einen Ausgang.
  2. Die Verknüpfungsstruktur gibt die Verbindungen der vielen Neuronen untereinander an.
  3. Die Lernregel gibt an, wie sich die Verbindungen oder Gewichtungen zwischen den Neuronen verändern.

Ein neuronales Netz wird mit Beispieldaten trainiert. Die Leistungsfähigkeit eines KNN wird wesentlich durch die Qualität der Trainingsdaten bestimmt.

Bestellen Sie Tausende von Trainingsdatensätze, die speziell für das Training Ihres KI-Systems erstellt werden.

Neuronale Netze als Grundlage für Künstliche Intelligenz

Der Begriff des Künstlichen Neuronalen Netzes steht für die verschiedenen Einheiten, die für die Verarbeitung von Informationen genutzt werden. Diese Netze sind eine der wichtigsten Voraussetzungen für die Entwicklung von Systemen der Künstlichen Intelligenz (KI), genauer gesagt: des Maschinellen Lernens.

KI-Algorithmen arbeiten nicht auf eine vorher festgesetzte Art und Weise, sondern sind lernfähig. Sie werden in der Trainingsphase mit bestimmten Regeln vertraut gemacht, verarbeiten auch Eingaben, die nicht eindeutig sind, und liefern erst durch die Kombination mit anderen Faktoren verwertbare Ergebnisse.

Neuronale Netze sind die Basis für Deep Learning. Deep Learning ist eine spezifische Form des Maschinellen Lernens, wobei die vielen Eingangs- und Ausgangsschichten des Modells für die „Tiefe“ des Lernprozesses stehen. Neuronale Netzwerke eignen sich insbesondere für die Verarbeitung sehr großer Datenmengen (Big Data).

clickworker.com
Cookie-Erklärung

Wir verwenden Cookies, um Ihnen ein optimales Website-Erlebnis zu bieten.
Cookies sind kleine Textdateien, die beim Besuch einer Website zwischengespeichert werden, um die Benutzererfahrung effizienter zu gestalten.
Laut Gesetz können wir Cookies auf Ihrem Gerät speichern, wenn diese für den Betrieb der Seite unbedingt notwendig sind. Für alle anderen Cookies benötigen wir Ihre Einwilligung.

Sie können Ihre Cookie-Einstellungen jederzeit auf unserer Website ändern. Den Link zu Ihren Einstellungen finden Sie im Footer.

Erfahren Sie in unseren Datenschutzbestimmungen mehr über den Einsatz von Cookies bei uns und darüber wie wir personenbezogene Daten verarbeiten.